# A strictly increasing continuous function that is differentiable at no point of a null set

We build in this article a strictly increasing continuous function $$f$$ that is differentiable at no point of a null set $$E$$. The null set $$E$$ can be chosen arbitrarily. In particular it can have the cardinality of the continuum like the Cantor null set.

### A set of strictly increasing continuous functions

For $$p \lt q$$ two real numbers, consider the function $f_{p,q}(x)=(q-p) \left[\frac{\pi}{2} + \arctan{\left(\frac{2x-p-q}{q-p}\right)}\right]$ $$f_{p,q}$$ is positive and its derivative is $f_{p,q}^\prime(x) = \frac{2}{1+\left(\frac{2x-p-q}{q-p}\right)^2}$ which is always strictly positive. Hence $$f_{p,q}$$ is strictly increasing. We also have $\lim\limits_{x \to -\infty} f_{p,q}(x) = 0 \text{ and } \lim\limits_{x \to \infty} f_{p,q}(x) = \pi(q-p).$ One can notice that for $$x \in (p,q)$$, $$f_{p,q}^\prime(x) \gt 1$$. Therefore for $$x, y \in (p,q)$$ distinct we have according to the mean value theorem $$\frac{f_{p,q}(y)-f_{p,q}(x)}{y-x} \ge 1$$.

### Covering $$E$$ with an appropriate set of open intervals

As $$E$$ is a null set, for each $$n \in \mathbb N$$ one can find an open set $$O_n$$ containing $$E$$ and measuring less than $$2^{-n}$$. $$O_n$$ can be written as a countable union of disjoint open intervals as any open subset of the reals. Then $$I=\bigcup_{m \in \mathbb N} O_m$$ is also a countable union of open intervals $$I_n$$ with $$n \in \mathbb N$$. The sum of the lengths of the $$I_n$$ is less than $$1$$. Continue reading A strictly increasing continuous function that is differentiable at no point of a null set

# A monotonic function whose points of discontinuity form a dense set

Consider a compact interval $$[a,b] \subset \mathbb R$$ with $$a \lt b$$. Let’s build an increasing function $$f : [a,b] \to \mathbb R$$ whose points of discontinuity is an arbitrary dense subset $$D = \{d_n \ ; \ n \in \mathbb N\}$$ of $$[a,b]$$, for example $$D = \mathbb Q \cap [a,b]$$.

Let $$\sum p_n$$ be a convergent series of positive numbers whose sum is equal to $$p$$ and define $$\displaystyle f(x) = \sum_{d_n \le x} p_n$$.

### $$f$$ is strictly increasing

For $$a \le x \lt y \le b$$ we have $f(y) – f(x) = \sum_{x \lt d_n \le y} p_n \gt 0$ as the $$p_n$$ are positive and dense so it exists $$p_m \in (x, y]$$.

### $$f$$ is right-continuous on $$[a,b]$$

We pick-up $$x \in [a,b]$$. For any $$\epsilon \gt 0$$ is exists $$N \in \mathbb N$$ such that $$0 \lt \sum_{n \gt N} p_n \lt \epsilon$$. Let $$\delta > 0$$ be so small that the interval $$(x,x+\delta)$$ doesn’t contain any point in the finite set $$\{p_1, \dots, p_N\}$$. Then $0 \lt f(y) – f(x) \le \sum_{n \gt N} p_n \lt \epsilon,$ for any $$y \in (x,x+\delta)$$ proving the right-continuity of $$f$$ at $$x$$. Continue reading A monotonic function whose points of discontinuity form a dense set

# A function whose derivative at 0 is one but which is not increasing near 0

From the mean value theorem, a real function whose derivative is strictly positive at every point of an interval is strictly increasing. In particular, a continuously differentiable function $$f$$ defined in a non-degenerate interval $$I$$ with a strictly positive derivative at a point $$a$$ of the interval is strictly increasing near that point. For the proof, we just have to notice that as $$f^\prime$$ is continuous and $$f^\prime(a) > 0$$, $$f^\prime$$ is strictly positive within an interval $$J \subset I$$ containing $$a$$. By the mean value theorem, $$f$$ is strictly increasing on $$J$$.

We now suppose that $$f$$ is differentiable on an interval $$I$$ containing $$0$$ with $$f^\prime(0)>0$$. For $$x>0$$ sufficiently close to zero we have $$\displaystyle \frac{f(x)-f(0)}{x-0} > \frac{f^\prime(0)}{2}>0$$, hence $$f(x)>f(0)$$. But that doesn’t imply that $$f$$ is strictly increasing in a neighborhood of zero. Let’s prove it with a counterexample. Continue reading A function whose derivative at 0 is one but which is not increasing near 0