# Counterexamples around series (part 1)

Unless otherwise stated, $$(u_n)_{n \in \mathbb{N}}$$ and $$(v_n)_{n \in \mathbb{N}}$$ are two real sequences.

### If $$(u_n)$$ is non-increasing and converges to zero then $$\sum u_n$$ converges?

Is not true. A famous counterexample is the harmonic series $$\sum \frac{1}{n}$$ which doesn’t converge as $\displaystyle \sum_{k=p+1}^{2p} \frac{1}{k} \ge \sum_{k=p+1}^{2p} \frac{1}{2p} = 1/2,$ for all $$p \in \mathbb N$$.

### If $$u_n = o(1/n)$$ then $$\sum u_n$$ converges?

Does not hold as can be seen considering $$u_n=\frac{1}{n \ln n}$$ for $$n \ge 2$$. Indeed $$\int_2^x \frac{dt}{t \ln t} = \ln(\ln x) – \ln (\ln 2)$$ and therefore $$\int_2^\infty \frac{dt}{t \ln t}$$ diverges. We conclude that $$\sum \frac{1}{n \ln n}$$ diverges using the integral test. However $$n u_n = \frac{1}{\ln n}$$ converges to zero. Continue reading Counterexamples around series (part 1)

# Isomorphism of factors does not imply isomorphism of quotient groups

Let $$G$$ be a group and $$H, K$$ two isomorphic subgroups. We provide an example where the quotient groups $$G / H$$ and $$G / K$$ are not isomorphic.

Let $$G = \mathbb{Z}_4 \times \mathbb{Z}_2$$, with $$H = \langle (\overline{2}, \overline{0}) \rangle$$ and $$K = \langle (\overline{0}, \overline{1}) \rangle$$. We have $H \cong K \cong \mathbb{Z}_2.$ The left cosets of $$H$$ in $$G$$ are $G / H=\{(\overline{0}, \overline{0}) + H, (\overline{1}, \overline{0}) + H, (\overline{0}, \overline{1}) + H, (\overline{1}, \overline{1}) + H\},$ a group having $$4$$ elements and for all elements $$x \in G/H$$, one can verify that $$2x = H$$. Hence $$G / H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$$. The left cosets of $$K$$ in $$G$$ are $G / K=\{(\overline{0}, \overline{0}) + K, (\overline{1}, \overline{0}) + K, (\overline{2}, \overline{0}) + K, (\overline{3}, \overline{0}) + K\},$ which is a cyclic group of order $$4$$ isomorphic to $$\mathbb{Z}_4$$. We finally get the desired conclusion $G / H \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \ncong \mathbb{Z}_4 \cong G / K.$

# An uncountable chain of subsets of the natural numbers

Consider the set $$\mathcal P(\mathbb N)$$ of the subsets of the natural integers $$\mathbb N$$. $$\mathcal P(\mathbb N)$$ is endowed with the strict order $$\subset$$. Let’s have a look to the chains of $$(\mathcal P(\mathbb N),\subset)$$, i.e. to the totally ordered subsets $$S \subset \mathcal P(\mathbb N)$$.

### Some finite chains

It is easy to produce some finite chains like $$\{\{1\}, \{1,2\},\{1,2,3\}\}$$ or one with a length of size $$n$$ where $$n$$ is any natural number like $\{\{1\}, \{1,2\}, \dots, \{1,2, \dots, n\}\}$ or $\{\{1\}, \{1,2^2\}, \dots, \{1,2^2, \dots, n^2\}\}$

### Some infinite countable chains

It’s not much complicated to produce some countable infinite chains like $\{\{1 \},\{1,2 \},\{1,2,3\},…,\mathbb{N}\}$ or $\{\{5 \},\{5,6 \},\{5,6,7\},…,\mathbb N \setminus \{1,2,3,4\} \}$

Let’s go further and define a one-to-one map from the real interval $$[0,1)$$ into the set of countable chains of $$(\mathcal P(\mathbb N),\subset)$$. For $$x \in [0,1)$$ let $$\displaystyle x = \sum_{i=1}^\infty x_i 2^{-i}$$ be its binary representation. For $$n \in \mathbb N$$ we define $$S_n(x) = \{k \in \mathbb N \ ; \ k \le n \text{ and } x_k = 1\}$$. It is easy to verify that $$\left(S_n(x))_{n \in \mathbb N}\right)$$ is a countable chain of $$(\mathcal P(\mathbb N),\subset)$$ and that $$\left(S_n(x))\right) \neq \left(S_n(x^\prime))\right)$$ for $$x \neq x^\prime$$.

What about defining an uncountable chain? Continue reading An uncountable chain of subsets of the natural numbers

# Counterexamples on real sequences (part 3)

Let $$(u_n)$$ be a sequence of real numbers.

### If $$u_{2n}-u_n \le \frac{1}{n}$$ then $$(u_n)$$ converges?

This is wrong. The sequence
$u_n=\begin{cases} 0 & \text{for } n \notin \{2^k \ ; \ k \in \mathbb N\}\\ 1- 2^{-k} & \text{for } n= 2^k\end{cases}$
is a counterexample. For $$n \gt 2$$ and $$n \notin \{2^k \ ; \ k \in \mathbb N\}$$ we also have $$2n \notin \{2^k \ ; \ k \in \mathbb N\}$$, hence $$u_{2n}-u_n=0$$. For $$n = 2^k$$ $0 \le u_{2^{k+1}}-u_{2^k}=2^{-k}-2^{-k-1} \le 2^{-k} = \frac{1}{n}$ and $$\lim\limits_{k \to \infty} u_{2^k} = 1$$. $$(u_n)$$ does not converge as $$0$$ and $$1$$ are limit points.

### If $$\lim\limits_{n} \frac{u_{n+1}}{u_n} =1$$ then $$(u_n)$$ has a finite or infinite limit?

This is not true. Let’s consider the sequence
$u_n=2+\sin(\ln n)$ Using the inequality $$\vert \sin p – \sin q \vert \le \vert p – q \vert$$
which is a consequence of the mean value theorem, we get $\vert u_{n+1} – u_n \vert = \vert \sin(\ln (n+1)) – \sin(\ln n) \vert \le \vert \ln(n+1) – \ln(n) \vert$ Therefore $$\lim\limits_n \left(u_{n+1}-u_n \right) =0$$ as $$\lim\limits_n \left(\ln(n+1) – \ln(n)\right) = 0$$. And $$\lim\limits_{n} \frac{u_{n+1}}{u_n} =1$$ because $$u_n \ge 1$$ for all $$n \in \mathbb N$$.

I now assert that the interval $$[1,3]$$ is the set of limit points of $$(u_n)$$. For the proof, it is sufficient to prove that $$[-1,1]$$ is the set of limit points of the sequence $$v_n=\sin(\ln n)$$. For $$y \in [-1,1]$$, we can pickup $$x \in \mathbb R$$ such that $$\sin x =y$$. Let $$\epsilon > 0$$ and $$M \in \mathbb N$$ , we can find an integer $$N \ge M$$ such that $$0 < \ln(n+1) - \ln(n) \lt \epsilon$$ for $$n \ge N$$. Select $$k \in \mathbb N$$ with $$x +2k\pi \gt \ln N$$ and $$N_\epsilon$$ with $$\ln N_\epsilon \in (x +2k\pi, x +2k\pi + \epsilon)$$. This is possible as $$(\ln n)_{n \in \mathbb N}$$ is an increasing sequence and the length of the interval $$(x +2k\pi, x +2k\pi + \epsilon)$$ is equal to $$\epsilon$$. We finally get $\vert u_{N_\epsilon} - y \vert = \vert \sin \left(\ln N_\epsilon \right) - \sin \left(x + 2k \pi \right) \vert \le \left(\ln N_\epsilon - (x +2k\pi)\right) \le \epsilon$ proving that $$y$$ is a limit point of $$(u_n)$$.

# A Commutative Ring with Infinitely Many Units

In a ring $$R$$ a unit is any element $$u$$ that has a multiplicative inverse $$v$$, i.e. an element $$v$$ such that $uv=vu=1,$ where $$1$$ is the multiplicative identity.

The only units of the commutative ring $$\mathbb Z$$ are $$-1$$ and $$1$$. For a field $$\mathbb F$$ the units of the ring $$\mathrm M_n(\mathbb F)$$ of the square matrices of dimension $$n \times n$$ is the general linear group $$\mathrm{GL}_n(\mathbb F)$$ of the invertible matrices. The group $$\mathrm{GL}_n(\mathbb F)$$ is infinite if $$\mathbb F$$ is infinite, but the ring $$\mathrm M_n(\mathbb F)$$ is not commutative for $$n \ge 2$$.

The commutative ring $$\mathbb Z[\sqrt{2}] = \{a + b\sqrt{2} \ ; \ (a,b) \in \mathbb Z^2\}$$ is not a field. However it has infinitely many units.

### $$a + b\sqrt{2}$$ is a unit if and only if $$a^2-2b^2 = \pm 1$$

For $$u = a + b\sqrt{2} \in \mathbb Z[\sqrt{2}]$$ we denote $$\mathrm N(u) = a^2- 2b^2 \in \mathbb Z$$. For any $$u,v \in \mathbb Z[\sqrt{2}]$$ we have $$\mathrm N(uv) = \mathrm N(u) \mathrm N(v)$$. Therefore for a unit $$u \in \mathbb Z[\sqrt{2}]$$ with $$v$$ as multiplicative inverse, we have $$\mathrm N(u) \mathrm N(v) = 1$$ and $$\mathrm N(u) =a^2-2b^2 \in \{-1,1\}$$.

### The elements $$(1+\sqrt{2})^n$$ for $$n \in \mathbb N$$ are unit elements

The proof is simple as for $$n \in \mathbb N$$ $(1+\sqrt{2})^n (-1 + \sqrt{2})^n = \left((1+\sqrt{2})(-1 + \sqrt{2})\right)^n=1$

One can prove (by induction on $$b$$) that the elements $$(1+\sqrt{2})^n$$ are the only units $$u \in \mathbb Z[\sqrt{2}]$$ for $$u \gt 1$$.

# A strictly increasing continuous function that is differentiable at no point of a null set

We build in this article a strictly increasing continuous function $$f$$ that is differentiable at no point of a null set $$E$$. The null set $$E$$ can be chosen arbitrarily. In particular it can have the cardinality of the continuum like the Cantor null set.

### A set of strictly increasing continuous functions

For $$p \lt q$$ two real numbers, consider the function $f_{p,q}(x)=(q-p) \left[\frac{\pi}{2} + \arctan{\left(\frac{2x-p-q}{q-p}\right)}\right]$ $$f_{p,q}$$ is positive and its derivative is $f_{p,q}^\prime(x) = \frac{2}{1+\left(\frac{2x-p-q}{q-p}\right)^2}$ which is always strictly positive. Hence $$f_{p,q}$$ is strictly increasing. We also have $\lim\limits_{x \to -\infty} f_{p,q}(x) = 0 \text{ and } \lim\limits_{x \to \infty} f_{p,q}(x) = \pi(q-p).$ One can notice that for $$x \in (p,q)$$, $$f_{p,q}^\prime(x) \gt 1$$. Therefore for $$x, y \in (p,q)$$ distinct we have according to the mean value theorem $$\frac{f_{p,q}(y)-f_{p,q}(x)}{y-x} \ge 1$$.

### Covering $$E$$ with an appropriate set of open intervals

As $$E$$ is a null set, for each $$n \in \mathbb N$$ one can find an open set $$O_n$$ containing $$E$$ and measuring less than $$2^{-n}$$. $$O_n$$ can be written as a countable union of disjoint open intervals as any open subset of the reals. Then $$I=\bigcup_{m \in \mathbb N} O_m$$ is also a countable union of open intervals $$I_n$$ with $$n \in \mathbb N$$. The sum of the lengths of the $$I_n$$ is less than $$1$$. Continue reading A strictly increasing continuous function that is differentiable at no point of a null set

# A monotonic function whose points of discontinuity form a dense set

Consider a compact interval $$[a,b] \subset \mathbb R$$ with $$a \lt b$$. Let’s build an increasing function $$f : [a,b] \to \mathbb R$$ whose points of discontinuity is an arbitrary dense subset $$D = \{d_n \ ; \ n \in \mathbb N\}$$ of $$[a,b]$$, for example $$D = \mathbb Q \cap [a,b]$$.

Let $$\sum p_n$$ be a convergent series of positive numbers whose sum is equal to $$p$$ and define $$\displaystyle f(x) = \sum_{d_n \le x} p_n$$.

### $$f$$ is strictly increasing

For $$a \le x \lt y \le b$$ we have $f(y) – f(x) = \sum_{x \lt d_n \le y} p_n \gt 0$ as the $$p_n$$ are positive and dense so it exists $$p_m \in (x, y]$$.

### $$f$$ is right-continuous on $$[a,b]$$

We pick-up $$x \in [a,b]$$. For any $$\epsilon \gt 0$$ is exists $$N \in \mathbb N$$ such that $$0 \lt \sum_{n \gt N} p_n \lt \epsilon$$. Let $$\delta > 0$$ be so small that the interval $$(x,x+\delta)$$ doesn’t contain any point in the finite set $$\{p_1, \dots, p_N\}$$. Then $0 \lt f(y) – f(x) \le \sum_{n \gt N} p_n \lt \epsilon,$ for any $$y \in (x,x+\delta)$$ proving the right-continuity of $$f$$ at $$x$$. Continue reading A monotonic function whose points of discontinuity form a dense set

# A normal extension of a normal extension may not be normal

An algebraic field extension $$K \subset L$$ is said to be normal if every irreducible polynomial, either has no root in $$L$$ or splits into linear factors in $$L$$.

One can prove that if $$L$$ is a normal extension of $$K$$ and if $$E$$ is an intermediate extension (i.e., $$K \subset E \subset L$$), then $$L$$ is a normal extension of $$E$$.

However a normal extension of a normal extension may not be normal and the extensions $$\mathbb Q \subset \mathbb Q(\sqrt{2}) \subset \mathbb Q(\sqrt[4]{2})$$ provide a counterexample. Let’s prove it.

As a short lemma, we prove that a quadratic extension $$k \subset K$$ , i.e. an extension of degree two is normal. Suppose that $$P$$ is an irreducible polynomial of $$k[x]$$ with a root $$a \in K$$. If $$a \in k$$ then the degree of $$P$$ is equal to $$1$$ and we’re done. Otherwise $$(1, a)$$ is a basis of $$K$$ over $$k$$ and there exist $$\lambda, \mu \in k$$ such that $$a^2 = \lambda a +\mu$$. As $$a \notin k$$, $$Q(x)= x^2 – \lambda x -\mu$$ is the minimal polynomial of $$a$$ over $$k$$. As $$P$$ is supposed to be irreducible, we get $$Q = P$$. And we can conclude as $Q(x) = (x-a)(x- \lambda +a).$

The entensions $$\mathbb Q \subset \mathbb Q(\sqrt{2})$$ and $$\mathbb Q(\sqrt{2}) \subset \mathbb Q(\sqrt[4]{2})$$ are quadratic, hence normal according to previous lemma and $$\sqrt[4]{2}$$ is a root of the polynomial $$P(x)= x^4-2$$ of $$\mathbb Q[x]$$. According to Eisenstein’s criterion $$P$$ is irreducible over $$\mathbb Q$$. However $$\mathbb Q(\sqrt[4]{2}) \subset \mathbb R$$ while the roots of $$P$$ are $$\pm \sqrt[4]{2}, \pm i \sqrt[4]{2}$$ and therefore not all real. We can conclude that $$\mathbb Q \subset \mathbb Q(\sqrt[4]{2})$$ is not normal.

# The image of an ideal may not be an ideal

If $$\phi : A \to B$$ is a ring homomorphism then the image of a subring $$S \subset A$$ is a subring $$\phi(A) \subset B$$. Is the image of an ideal under a ring homomorphism also an ideal? The answer is negative. Let’s provide a simple counterexample.

Let’s take $$A=\mathbb Z$$ the ring of the integers and for $$B$$ the ring of the polynomials with integer coefficients $$\mathbb Z[x]$$. The inclusion $$\phi : \mathbb Z \to \mathbb Z[x]$$ is a ring homorphism. The subset $$2 \mathbb Z \subset \mathbb Z$$ of even integers is an ideal. However $$2 \mathbb Z$$ is not an ideal of $$\mathbb Z[x]$$ as for example $$2x \notin 2\mathbb Z$$.

# A function whose Maclaurin series converges only at zero

Let’s describe a real function $$f$$ whose Maclaurin series converges only at zero. For $$n \ge 0$$ we denote $$f_n(x)= e^{-n} \cos n^2x$$ and $f(x) = \sum_{n=0}^\infty f_n(x)=\sum_{n=0}^\infty e^{-n} \cos n^2 x.$ For $$k \ge 0$$, the $$k$$th-derivative of $$f_n$$ is $f_n^{(k)}(x) = e^{-n} n^{2k} \cos \left(n^2 x + \frac{k \pi}{2}\right)$ and $\left\vert f_n^{(k)}(x) \right\vert \le e^{-n} n^{2k}$ for all $$x \in \mathbb R$$. Therefore $$\displaystyle \sum_{n=0}^\infty f_n^{(k)}(x)$$ is normally convergent and $$f$$ is an indefinitely differentiable function with $f^{(k)}(x) = \sum_{n=0}^\infty e^{-n} n^{2k} \cos \left(n^2 x + \frac{k \pi}{2}\right).$ Its Maclaurin series has only terms of even degree and the absolute value of the term of degree $$2k$$ is $\left(\sum_{n=0}^\infty e^{-n} n^{4k}\right)\frac{x^{2k}}{(2k)!} > e^{-2k} (2k)^{4k}\frac{x^{2k}}{(2k)!} > \left(\frac{2kx}{e}\right)^{2k}.$ The right hand side of this inequality is greater than $$1$$ for $$k \ge \frac{e}{2x}$$. This means that for any nonzero $$x$$ the Maclaurin series for $$f$$ diverges.